Through 10 lessons and more than 20 hands-on activities, students are introduced to the concept of an environment and the many interactions within it. As they learn about natural and human-made environments, as well as renewable and non-renewable natural resources, they see how people use our planet's natural resources and the many resulting environmental issues that exist in our world today. Topics include: solid waste disposal; the concepts of reduce, reuse, recycle and compost; the causes and effects of water pollution and the importance of water treatment and clean-up methods; air pollution and air quality and the many engineering technologies to prevent it and clean it up; land use and community planning, seeing how decisions made by people have a long-term impact on our natural world; and renewable energy sources, seeing how solar, water and wind energy can be transformed into electricity. In the hands-on activities, students: create a yarn "web" to identify environmental interactions, which they tally and graph; use Moebius strips (loops of paper with a half twist) to demonstrate the environmental interconnectedness and explore natural cycles (water, oxygen/carbon dioxide, carbon, nitrogen); conduct an environmental issue survey to gather and graph data and use an opinion spectrum; brainstorm ways that they use and waste natural resources; use cookies to simulate the distribution of nonrenewable resources; collect, categorize, weigh and analyze classroom solid waste for a week; build and observe a model landfill; evaluate alternative product packaging; use models to investigate the process and consequences of water contamination; design and build water filters; observe and discuss a balloon model of an electrostatic precipitator; build particulate matter collectors; observe and discuss a model of a wet scrubber; dig into the newspaper's daily air quality index; act as community planning engineers to determine optimal structure placement in a community; investigate the thermal storage properties of sand, salt, water and paper to evaluate their suitability as passive solar thermal mass; design and create models for new waterwheels within time and material constraints; build model anemometers; and create publications to communicate what they have learned.