Through this unit, students act as engineers who are given the challenge to design laparoscopic surgical tools. After learning about human anatomy and physiology of the abdominopelvic cavity, especially as it applies to laparoscopic surgery, students learn about the mechanics of elastic solids, which is the most basic level of material behavior. Then, they explore the world of fluids and learn how fluids react to forces. Then, they combine their understanding of the mechanics of solids and fluids to understand viscoelastic materials, such as those found in the human body. Finally, they learn about tissue mechanics, including how collagen, elastin and proteoglycans give body tissues their unique characteristics. In a culminating hands-on activity, student teams design their own prototypes of laparoscopic surgical robots-remotely controlled, camera-toting devices that must fit through small incisions, inspect organs and tissue for disease, obtain biopsies, and monitor via ongoing wireless image-taking. They use a synthetic abdominal cavity simulator to test and iterate the prototype devices.